Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Daqing Shi, ${ }^{\text {a }}$, Juxian Wang, ${ }^{\text {a }}$ Chunling Shi, ${ }^{\text {a }}$ Liangce Rong, ${ }^{\text {a }}$ Xiangshan Wang ${ }^{\text {a }}$ and Hongwen Hu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.127$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were
automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

5,5-Dimethyl-8,9-methylenedioxy-2,3-diphenyl-5,6-dihydroimidazo[1,2-c]quinazoline

The title compound $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$, (I), was synthesized by the reaction of 4,5-diphenyl-2-(2-nitro-4,5-methylenedioxyphenyl)imidazole with acetone, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$. X-ray analysis reveals that (I) contains a pyrimidine ring in a twist-boat conformation.

Comment

Quinazolines are an important class of compounds found in many naturally occurring products (e.g. hinckdentine A; Blackman et al., 1987; Billimoria \& Cava, 1994), and employed as potent agents (Helissey et al., 1994; Brana et al., 1994; Riou et al., 1991; Ibrahim et al., 1988). Low-valent titanium reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 1993, 1997, 1998, 2003). We report here the crystal structure of 5,5-dimethyl-8,9-methylenedioxy-2,3-diphenyl-5,6-dihydro-imidazo[1,2-c] quinazoline, (I), synthesized by the reaction of 4,5-diphenyl-2-(2-nitro-4,5-methylenedioxyphenyl)imidazole with acetone, induced by a low-valent titanium reagent ($\mathrm{TiCl}_{4} / \mathrm{Zn}$).

(I)

In (I), atoms $\mathrm{N} 1, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 8, \mathrm{~N} 2$ and C 9 form a pyrimidine ring, with interatomic distances of 1.437 (3) \AA for $\mathrm{N} 1-\mathrm{C} 9$ and 1.488 (3) A for $\mathrm{N} 2-\mathrm{C} 9$, which indicate that these $\mathrm{C}-\mathrm{N}$ bonds are single. The pyrimidine ring adopts a twist-boat conformation; atoms C4, C5, C8 and N2 are coplanar, while atoms N 1 and C9 deviate from this plane by -0.142 (2) and 0.418 (1) A, respectively. The dihedral angle between the $\mathrm{C} 12-\mathrm{C} 17$ and $\mathrm{C} 18-\mathrm{C} 23$ phenyl rings is 75.91 (2) ${ }^{\circ}$. In addition, because of the existence of a conjugated system, the $\mathrm{N} 1-$ $\mathrm{C} 4 \quad[1.383(3) \AA]$, $2-\mathrm{C} 8 \quad[1.363$ (3) \AA] $]$ and $\mathrm{N} 2-\mathrm{C} 10$ $[1.396(3) \AA]$ distances are significantly shorter than the typical Csp2 ${ }^{2}-\mathrm{N}$ bond distance ($1.426 \AA$; Lorente et al., 1995). The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2), to form extended chains in the c direction (Fig. 2).

Experimental

The title compound, (I), was prepared by the reaction of 4,5 -di-phenyl-2-(2-nitro-4,5-methylenedioxyphenyl)imidazole with acetone,

Received 20 October 2003 Accepted 22 October 2003 Online 31 October 2003

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The molecular packing in the crystal structure of (I). Hydrogen bonds are shown as dashed lines.
induced by a low-valent titanium reagent ($\mathrm{TiCl}_{4} / \mathrm{Zn}$) (m.p. 512513 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=395.45$
Monoclinic, $P 2_{1} / c$
$a=9.594$ (2) \AA 。
$b=16.928$ (4) \AA
$c=12.865(3) \AA$
$\beta=95.73$ (2) ${ }^{\circ}$
$V=2079.1(8) \AA^{3}$
$Z=4$

Data collection

Siemens $P 4$ diffractometer ω scans
4424 measured reflections
3873 independent reflections
1824 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=25.5^{\circ}$
$D_{x}=1.263 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 29 reflections
$\theta=2.8-13.9^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, colorless
$0.48 \times 0.38 \times 0.26 \mathrm{~mm}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 20$
$l=-15 \rightarrow 15$
3 standard reflections
every 97 reflections
intensity decay: 7.5\%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.127$
$S=0.82$
3873 reflections
278 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0654 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0096 (12)

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

N1-C4	$1.383(3)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.327(3)$
N1-C9	$1.437(3)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.388(3)$
N2-C8	$1.363(3)$	$\mathrm{C} 5-\mathrm{C} 8$	$1.445(3)$
N2-C10	$1.396(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.372(3)$
N2-C9	$1.488(3)$		
C4-N1-C9	$120.2(2)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 5$	$127.4(2)$
C8-N2-C10	$107.08(18)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 5$	$120.6(2)$
C8-N2-C9	$120.06(19)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{N} 2$	$106.93(19)$
C10-N2-C9	$130.88(18)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 24$	$110.0(2)$
C8-N3-C11	$104.96(18)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 24$	$114.4(2)$
N1-C4-C5	$118.8(2)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 25$	$109.7(2)$
N1-C4-C3	$120.5(2)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 25$	$106.1(2)$
N3-C8-N2	$112.0(2)$		
C9-N1-C4-C5	$-31.3(3)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$	$-1.3(2)$
C9-N1-C4-C3	$152.6(2)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$	$-166.9(2)$
C2-C3-C4-N1	$175.6(2)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 5$	$13.3(3)$
N1-C4-C5-C6	$-176.5(2)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 9-\mathrm{N} 2$	$47.1(3)$
N1-C4-C5-C8	$1.5(3)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 24$	$171.9(2)$
C11-N3-C8-N2	$0.5(2)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 9-\mathrm{N} 1$	$160.5(2)$
$\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 5$	$-179.8(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N $\cdots \mathrm{N} 3^{\mathrm{i}}$	$0.92(3)$	$2.24(3)$	$3.135(3)$	$166(2)$
Symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$.				

The H atom on the N atom was refined isotropically, with the $\mathrm{N}-$ H bond length restrained to 0.92 (3) \AA; other H atoms were positioned geometrically and refined as riding $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

We thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Natural Science Foundation of the Education Committee of Jiangsu Province (No. 03KJB150136) for financial support.

References

Blackman, A., Hambley, T. W., Picker, R., Taylor, W. C. \& Thirasana, N. (1987). Tetrahedron Lett. 28, 5561-5564.

Billimoria, A. D. \& Cava, M. P. (1994). J. Org. Chem. 59, 6777-6782.
Brana, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martin, Y., Redondo, C., Schlick, E. \& Walker, N. (1994). Anti-Cancer Drugs Des. 9, 527-538.
Helissey, P., Cros, S. \& Giorgi-Renault, S. (1994). Anti-Cancer Drugs Des. 9, 51-57.

Ibrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. \& Green, B. (1988). Eur. J. Med. Chem. 23, 183-188.

Lorente, A., Galan, C., Fonseca, I. \& Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546-1555.
McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Riou, J. F., Helissey, P., Grondard, L. \& Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699-706.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Shi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. \& Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963-2964.
Shi, D. Q., Lu, Z. S., Mu, L. L. \& Dai, G. Y. (1998). Synth. Commun. 28, $1073-$ 1078.

Shi, D. Q., Mu, L. L., Lu, Z. S. \& Dai, G. Y. (1997). Synth. Commun. 27, 41214129.

Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

